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Abstract Our ability to additively combine two learned
internal models was investigated by studying the forces
people generate when lifting objects with a precision grip.
Subjects were required to alternately lift two objects of
identical physical appearance but differing weight. Grip
force scaling prior to lift-off was used to estimate the
output of the internal model associated with each object.
Appropriate internal models were formed when alternately
lifting two objects of different weight. The objects were
then combined by stacking them one upon the other, and
the combined object was lifted. Results show that subjects
can additively combine internal models of object dynamics
but the sum is biased by a default estimate of the object’s
weight.
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Introduction

When we manipulate a novel object, sensory feedback
provides us with information about its physical properties
such as its weight and the roughness of its surface. This
information is thought to be used to tune an internal model
which is used to predict the behavior of the object and its
effects on the body. Our ability to swap between different
objects and contexts quickly and effortlessly has led to the
suggestion that the central nervous system (CNS) main-
tains many internal models in memory simultaneously
(Neilson et al. 1985; Ghahramani and Wolpert 1997). The
brain is thought to select the most appropriate models for
the current task and use them in computing appropriate

motor commands (Wolpert and Kawato 1998; Haruno et
al. 2001).

The forces people employ when lifting an object from a
table are precisely coordinated and provide an opportunity
to study the formation of internal models. When using a
precision grip, subjects scale both the horizontal grip force
at the fingertips and the vertical load force opposing the
object’s weight based on previous experience of the object
to be lifted (Johansson and Westling 1984). Accurate
scaling of grip force is important because too little causes
the object to slip from the fingers while too much may
impair sensitivity, damage the object or lead to fatigue.
During a lift, grip and load forces are increased in parallel
to prevent the object slipping from the fingers.

Since weight-related sensory information is unavailable
until after object lift-off, grip and load forces must be
programmed in anticipation of the movement. Examina-
tion of grip and load forces prior to object lift-off confirms
that grip and load forces are pre-programmed. When a
subject lifts an object of unknown weight, the peak force
rates are initially incorrect, but fully adapt to the new
weight after a single trial. The rates used after adaptation
are strongly related to object weight and occur prior to
object lift-off (Johansson and Westling 1988).

This anticipatory scaling of grip and load force can been
seen to represent the output of an internal model. When a
new object is encountered, this model seems to be based
on visual (Gordon et al. 1991b) and tactile (Gordon et al.
1991a; Edin et al. 1992) information. The model is then
updated based on mechanical information obtained in
subsequent lifts (Johansson and Westling 1988; Gordon et
al. 1993; Burstedt et al. 1997; Jenmalm et al. 1998).

An internal model must capture both the dynamic and
kinematic characteristics of a task. The dynamic char-
acteristics of a task concern the changing relationship
between motor commands and body position, while the
kinematic characteristics concern the relationship between
body position and sensory feedback. Krakauer et al. found
that learning and consolidation of kinematic and dynamic
transformations occur independently (1999). Flanagan et
al. (1999) showed that if subjects learn a visuomotor
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rotation (a kinematic transformation) and then learn a
viscous curl field (a dynamic transformation), their
performance on the combined transformation is better
than if they had no experience of the constituent
transformations. This shows that it is possible, under
some circumstances, to combine two previously learned
internal models. It is unknown whether two dynamic
internal models can be learned and appropriately com-
bined in a similar manner. In fact, several studies have
shown that it is often very difficult to learn two dynamic
internal models at the same time (Karniel and Mussa-
Ivaldi 2002). Brashers-Krug et al. (1996) showed that if
two opposing force fields generated by a robot manip-
ulandum were learned in rapid succession, then no
memory of the first field was retained at the end of
training. It appeared that the process of forming the
internal model of the second field destructively interfered
with the internal model of the first field. If, however, a 5-h
period of consolidation was allowed between learning the
fields, then both internal models were retained. Gandolfo
et al. (1996) showed that two opposing force fields could
be learned if subjects used a different arm configuration
when moving in each field. This suggests that interference
was not observed because the two fields were, in fact,
learned as a single dynamic transformation between torque
and limb configuration. In contrast, the fields could not be

learned if the same arm position was maintained in each
field but subjects were given a visual cue, or if the position
of the thumb, but not the overall arm, was changed
between fields.

Here we investigate the ability of the CNS to combine
two previously formed dynamic internal models. Specifi-
cally, we examine if the CNS is able to generate a new
model appropriate for controlling stacked objects by
appropriately combining their internal models. Subjects
were required to alternately lift two objects of identical
physical appearance but differing weight. This allowed us
to examine if they could form an internal model of each
object. The two objects were then stacked, one upon the
other, and the subjects were required to lift this new
combined object. Grip force scaling during the loading
phase was used as a window on the output of the internal
model employed for the first lift with the combined object.
The employment of an appropriate peak grip force rate
(PGR) on the first lift with the combined object was used
to assess subjects’ ability to additively combine internal
models.

Fig. 1A, B Visually identical
plastic boxes were threaded onto
plastic spindles. Force transdu-
cers were attached to the top of
the spindles with a strong clip.
A The first 12 lifts alternated
between the left and right ob-
jects. Subjects learned appropri-
ate grip force scaling for each
object by the sixth lift. B Ex-
perimenter placed the left object
on top of the right object;
subjects then completed six
additional lifts. Pattern was re-
peated twice for all nine com-
binations of the individual
weights. Typical force rate pro-
files for first (dotted line) and
last (solid line) lifts with two
250-g boxes are shown at right.
In this example the object’s
weight is underestimated on the
first combined lift, resulting in
pulsatile corrections later in the
movement
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Materials and methods

Subjects

Eight healthy, right-handed subjects (aged 19–28 years) participated
in the experiment after providing written informed consent. None of
the subjects reported sensory or motor deficits. A local ethics
committee approved the experimental protocol.

Apparatus

The experimental apparatus is shown in Fig. 1. Two six-axis force
transducers (Nano, ATI) were used to measure fingertip grip forces.
The transducers were mounted on small clips so they could easily be
attached or detached from objects. Two faces of each transducer
were covered with sandpaper (Grade No. 210) to provide a suitable
surface for subjects to grip. Six identical black plastic boxes
(39×56×85 mm) were filled with lead shot so that two were of 62.5-
g mass, two had a mass of 125 g and two were of 250-g mass. The
boxes were then packed with foam to prevent rattling during lifting.
Two lightweight (11 g) perspex spindles were constructed. Holes
were cut in the top and bottom of the boxes so that they could be
threaded onto the spindles. The transducers were attached to the
spindles using the clips. The use of spindles ensured that the centre
of gravity of the objects remained well below the fingers so that the
apparent stability of the object did not bias the pre-programmed grip
of forces. Force transducer output was sampled at 500 Hz. The total
mass of each object comprised the mass of the plastic boxes plus the
spindle and force transducer combination (which increased the mass
of each object by 50 g).
The objects were of identical shape to avoid introducing biases

caused by size cues and were the same colour to prevent subjects
associating colour and weight, which might influence the next lift
with same object.

Procedure

Subjects were seated in front of a table and required to use their right
arm to lift one of two objects located in front of them. They were
asked to keep their forearm approximately parallel to the table and
grasp the object between the tips of the thumb and forefinger of their
right hand. Subjects were asked to lift the object 3 cm off the surface
and to maintain a constant lifting rate. Subjects were first
familiarized with the mass of the spindle and force transducer by
lifting the combination a few times.
Subjects were required to wear visual occlusion spectacles

(PLATO, Translucent Technologies), which were opaque while the
objects were being set up and clear during the subjects’ lifts, to
prevent any visual cues as to the weight of the objects. Subjects also
wore headphones which generated white noise to prevent any
auditory cues. At the beginning of each set, the experimenter
threaded a box onto each of the two spindles. A force transducer was
then attached to the end of each spindle.
One set of lifts consisted of six lifts with each of the two separate

objects (alternating between objects after each lift, see Fig. 1a) and
then six lifts with the two objects stacked vertically (Fig. 1b). The
experiment consisted of 18 sets of 18 lifts each. The weights of the
objects were changed after each set. The 18 sets comprised two
repetitions with all nine possible combinations of two weights (all
the objects weighed either 62.5, 125 or 250 g). The first repetition
was presented in pseudo-random order and the second repetition
was presented in the reverse order.
The headphones generated a tone to indicate that the subject

should lift the object and, after a 1-s delay, another tone to replace
the object. After 12 lifts alternating between individual objects
(starting with the left object), the left object was lifted off its spindle
by the experimenter and, in full view of the subject, threaded onto
the same spindle as the right object. The weight of the new,

combined object was approximately the sum of the weights of the
two individual objects (minus the 50 g of the spindle and force
transducer). The subject was then required to lift the combined
object six times. The time between trials was approximately 1 s.
A control experiment was performed immediately after the main

experiment. Instead of swapping between two objects, subjects lifted
the same object six times in succession without swapping. This six-
trial block was repeated with each individual weight and combina-
tion of weights experienced in the main experiment. Hence, the
control experiment comprised nine blocks: three lifting each
individual object and six lifting each possible combined object.
The weights were presented in random order.

Analysis

For each trial the grip force was numerically differentiated with a
50th order FIR least squares differentiator (25-Hz bandwidth) and
the peak grip force rate (PGR) was calculated. PGR has been widely
used to assess programmed grip force and is particularly robust
when the subject expects a heavier weight, since the object lifts off
the surface before corrections can be made. PGR is, however, prone
to bias when a subject expects a lighter weight due to corrective
pulses. Consequently, we also looked at the first peak in grip force
rate after the vertical lift force first begins to increase without
changing direction (FGR). This measure should more accurately
reflect the programmed peak in grip force, but is considerably more
variable.
All weights used in analysis, and quoted in the results, include the

spindle and force transducer and therefore represent the actual
weight lifted by the subject. Where a linear regression with a single
predictor variable is quoted in the analysis, the inter-subject
component of the variance is not included in the result.

Results

Ability to learn two internal models concurrently

The experiment relies on the hypothesis that appropriate
grip forces for two visually identical objects of differing
weights can be learned concurrently. This was tested by
performing a linear regression between the PGR and the
weight of the individual objects. No relationship should
exist on the first lift since the subjects have no prior
knowledge of the mass of the object. A weak relationship
was, in fact, detected (r2=0.03, p<0.01). This relationship
is probably caused by the corrective increases in grip force
required to prevent slippage when the object was heavier
than expected. By the second lift a much stronger
relationship between PGR and weight was evident
(r2=0.31, p<0.0001). This is consistent with previous
work showing adaptation is essentially complete after a
single lift (Gordon et al. 1993). The relationship
strengthened slightly during the following four lifts
(sixth lift; r2=0.37, p<0.0001). In the control data, where
the same object was lifted six times, the corresponding
relationship was stronger (sixth lift; r2=0.67, p<0.0001),
confirming the well-known result that PGR scales linearly
with weight. No differences were found between the PGR,
or FGR, employed in the main and control experiments
(paired t test, sixth lift; p>0.05). Force rate profiles for
typical first and last lifts for a 250-g mass are shown in
Fig. 1a.
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To examine the influence of the previous lift on the
current lift during the alternating lifts in the main
experiment, a linear model was fit to the second lift of
each object.

PGR ¼ � wn þ � wn�1 þ � (1)

where PGR (N/s) is the peak grip force rate on the second
lifts, wn is the total weight of the current object (g), wn-1 is
the total weight of the previous object and δ is a constant.
Fitting the model to the data (pooled across all subjects)
we found that wn=0.046, wn-1=0.006 and δ=6 (r2=0.25,
p<0.0001). The only individually significant parameter
was wn (step-wise regression; r2=0.25, p<0.0001). The
same model was also fitted separately to the data from
each individual subject. The individual wn values were
greater than zero (t test; p<0.0001) while the individual
wn-1 values were not (t test; p>0.05). This shows that the
weight of previous object has no influence on the PGR of
the current lift.

We repeated the same analysis looking at the magnitude
of the first peak in grip force rate (FGR). When we pooled
the data across all subjects we found that wn=0.043, wn-

1=0.003 and δ=4.49 (r2=0.21, p<0.0001). Again, the only
individually significant parameter was wn (step-wise
regression; r2=0.21, p<0.0001). As for the PGR measure,
the individual wn values were greater than zero (t test;
p<0.0001) while the individual wn-1 values were not (t test;
p>0.05). This suggests that the PGR analysis was not
strongly biased by corrective movements.

In summary, these results indicate that subjects were
able to learn appropriate grip force scaling for two separate
weights, even when alternating between them, and that
most of the learning happened within the first few lifts
with each object.

Ability to combine two internal models

Since adaptation is essentially complete after the first few
lifts, the mean PGR over the final three lifts provides a
good estimate of the subjects’ preferred PGR for an object
of a given weight. If the PGR of the first lift with the
combined object is close to the subjects’ preferred PGR for
the combined weight then subjects are accurately estimat-
ing the weight of the combined object. The mean preferred
PGR for each combined object is shown in Fig. 2 (dashed
line). As expected, there is a strong relationship between
preferred PGR and the total weight of the object (linear
regression; r2=0.67, p<0.0001).

The PGR of the first lift with the combined object is
also related to the total weight of the object (linear
regression; r2=0.35, p<0.0001). The regression line is
illustrated in Fig. 2 (solid line). A similar, though slightly
weaker, relationship exists between the FGR of the first lift
with the combined object and its weight (linear regression;
r2=0.19, p<0.0001). The relationship was investigated
further by fitting a multiple regression model to the pooled

data from all subjects,

PGR ¼ �w1 þ �w2 þ � (2)

where PGR is the peak grip force rate on the second
lifts, w1 is the total weight of the first constituent object,
w2 is the total weight of the second constituent object and
δ is a constant. PGR was found to depend approximately
equally on the weights of the first and second constituent
objects (α=0.0414, β=0.0418, r2=0.21, p<0.0001). The
multiple regression model was also fitted separately to the
data from each individual subject. Based on the resulting
parameters, PGR was found to depend on the total weight
of the first constituent object (t test; p<0.001) and of the
second object (t test; p<0.01) but did not depend more on
one weight more than the other (paired t test; p>0.05). This
also rules out the possibility that subjects simply double
the PGR appropriate for the second object and other
similar possibilities.

The PGR of the first lift with each combined object
during the control experiment was also investigated. Since,
in this case, the subjects had no knowledge of weights of
the constituent objects, no relationship should exist
between weight and PGR. As expected, the results indicate
that the PGR is unrelated to the total weight (linear
regression; r2=0.06, p>0.05). FGR is also unrelated to total
weight (linear regression; r2=0.08, p>0.05). The regres-
sion line for PGR is shown in Fig. 2 (dotted line).

The overall regression line for the first lift in the main
experiment, as shown in Fig. 2, differs significantly in
slope from both the control data (ANCOVA interaction;
F=15.5, p<0.001) and the preferred value (ANCOVA
interaction; F=8.6, p<0.005). Repeating the same analysis

Fig. 2 Variation in peak grip force rate with weight. The ideal peak
grip force rates (PGR) for lifts with combined objects are indicated
with crosses (mean PGR over last three lifts, regression shown with
dashed line). The mean peak grip force rate used for first lifts with
the combined objects is indicated with squares (regression shown
with solid line). Ideal performance would result in the solid line
lying on top of the dashed line. Mean PGR for the first lift with the
combined objects from the control experiment, where the subjects
have no knowledge of the constituent weights, is also shown
(circles, dotted regression line). Vertical bars indicate SE
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using FGR reveals similar relationships, with the first lift
differing from the control (ANCOVA interaction;
F=10.25, p<0.001) and preferred values (ANCOVA
interaction; F=11.1, p<0.005).

The PGR used on the first lift appears to be intermediate
between the control and the preferred values. This
suggests that subjects partially adjust their initial estimate,
as gauged by the control data, to take into account the
information obtained when lifting the individual objects.
Hence, subjects estimate the combined object to be heavier
than it is when the individual objects are lighter than
average, and lighter than it is when the individual objects
are heavier than average.

The nature of this adjustment was investigated by fitting
a linear model to the data. The weight subjects expected
on the first combined lift was estimated with a linear
regression of preferred PGR, as defined above, for the
combined object against the total weight of the object (i.e.,
including the force transducer and spindle). Inter-subject
variance was eliminated by performing this initial linear
regression separately for each subject. The following
model was then fitted to the data for the first lift:

wE ¼ � w1 þ � w2 þ �; (3)

where wE is the weight expected on the first lift, w1 is the
total weight of the first object, w2 is the total weight of the
second object and δ is a constant. If subjects use a simple
summation, the model should give α =β=1 and δ=0. The
least-squares fit to the model was α=0.67, β=0.66, δ=90. α
and β were both significant with p<0.0001. Hence, the
weightings given to the first and second objects are both
approximately 2/3. A possible interpretation of this result
is that an estimate of the total weight is being combined, in
a ratio of 2:1, with a default estimate of the weight wD so
that

wE ¼ 2=3: w1 þ w2ð Þ þ 1=3: wD; (4)

and, using the parameters obtained above,
wD = 3.δ = 270 g.

Fitting the model to the FGR data gives a similar result:
α=0.52, β=0.56, δ=104, and α and β were both significant
with p<0.0001. By this measure, however, the estimate of
the total weight is being combined with a default estimate
by a ratio closer to 1:1.

Discussion

It has been hypothesized that multiple internal models are
stored by the CNS for use in motor control (Neilson et al.
1985; Wolpert and Kawato 1998). There is evidence that,
under certain conditions, it is possible to learn these
internal models concurrently and combine them. Flanagan
et al. (1999) have shown that internal models of novel
kinematic and dynamic transformations can be used to
improve performance when the two transformations are

combined. Our work suggests that, in addition to selecting
appropriate models and combining kinematic and dynamic
transformations, the CNS may be able to additively
combine two dynamic internal models. The results also
show that the CNS is able to rapidly form, and maintain,
appropriate internal models for lifting two different
weights when repeatedly swapping between them. This
is in contrast with force-field learning experiments
showing that two dynamic internal models cannot be
learned concurrently unless the posture of the arm is
changed between conditions (Gandolfo et al. 1996;
Karniel and Mussa-Ivaldi 2002).

The Modular Selection and Identification for Control
(MOSAIC) model was proposed as an architecture the
CNS might use to learn, and swap between, multiple
modular controllers (Wolpert and Kawato 1998; Haruno et
al. 2001). In MOSAIC a set of forward models (predictors)
simultaneously predict the behaviour of the motor system
when performing previously learned tasks. Each forward
model is paired with an inverse model (controller) and the
quality of the prediction is used to determine how
appropriate a controller is for the current task. The
MOSAIC is able to make smooth weighted transitions
from one controller to another as contexts change but, in
its current form, MOSIAC includes no provision for more
complex combinations of controllers. Hence, the MOSA-
IC model is able to average, but unable to add the outputs
of two controllers. Our results suggest that MOSAIC
requires revision to include the ability to generate additive
combinations of its controllers.

We observed that people tend to underestimate the
weight of heavy combinations and overestimate the weight
of light objects. Assuming an additive combination were
available, these results are consistent with MOSAIC
basing the estimated weight on a combination of 2/3
based on the evidence of the two weights from previous
lifts and 1/3 based on the a priori default weight of two
objects. From a statistical viewpoint, the default weight for
two blocks is likely to be twice the average weight
experienced for each block. The average experienced
weight of each block was 148.8 g (the average of the
possible block weights of 250, 125 or 62.5 g). Therefore,
the default for two boxes would be 291.7 g, which is
similar to the fit value of 270 g. Thus, subjects appear to
act in a Bayesian way in the face of uncertainty, combining
a priori information about the likely weight of the blocks
with evidence about the weights from previous lifts.

It is also possible that rapid memory decay could
contribute to the systematic errors we saw on the
combined lifts. The memory representations for the
individual objects might rapidly decay towards a default
weight. The delay between the final lifts with individual
objects and the first lift with the combination was kept
short to minimize the effects of any memory decay.

Cognitively estimating the weight of the combined
object is not the same as forming of an internal model of
the object’s dynamics per se. This would require the
additional step of using the estimated weight to para-
meterize a transformation to the appropriate motor
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commands. This experiment cannot distinguish whether
the weight parameter is estimated cognitively, but previous
work suggests that it is not. When people are asked to lift
objects of identical weight but different size the smaller
object is consistently perceived to be heavier, an effect
known as the “size-weight illusion” (Murray et al. 1999).
When subjects repeatedly lift the two objects they quickly
learn to scale the grip force appropriately for the actual
weight of each object, but the size-weight illusion does not
diminish (Flanagan and Beltzner 2000). This suggests that
grip force control and conscious perception of object
weight are dissociated processes. When making rapid,
cyclic arm movements while grasping an object, grip force
is precisely modulated in phase with variations in the load
force. This modulation persists when subjects are asked to
grip the object very tightly, so that modulation is no longer
necessary to prevent slips (Flanagan and Wing 1995). This
suggests that grip force modulation is an automatic process
which subjects are unable to suppress consciously.

When learning the weights of the constituent objects, it
could be that subjects employed a simple cognitive
association between position and weight. We were able
to eliminate this possibility by swapping the positions of
two objects after their individual weights had been learned
by alternate lifting. Subjects continued to employ the same
grip force scaling on each object despite their change in
position.

The weight of the spindle and force transducer are a
potential confound as they contribute 50 g to the total
weight of all objects lifted in the experiment. The spindle
was necessary as we needed to attach the masses securely
so that subjects would treat the combined object as if it
were as mechanically robust as the individual objects.
There was no indication of consistent underestimation of
the mass of the object, as would be expected if the
contribution of spindle were simply ignored. Similarly
there was no evidence of consistent overestimation as
would be expected if the internal models for the two
weights were simply added so that the spindle was
included in the combined model twice.

There are other ways addition might occur within the
MOSAIC architecture. For example, the responsibility
predictor, which generates an a priori estimate of the
likelihood a controller might be useful, could be capable of
selecting broadly appropriate modules for lifting combined
objects. This would require a relatively complex cognitive
addition operation using the remembered weights as
contextual cues. We feel this complex mapping is not
consistent with the existing MOSAIC structure, and
maintain that the addition is more likely to occur at the
controller outputs.

We found no evidence that the forces used to lift one
object were affected by the weight of the previous object
on the alternating trials. Previous work looking at lifts with
a single object of changing density has shown a strong
effect of the previous lift on the current lift (Gordon et al.
1993). A strong effect of the previous trial was also found
when subjects manipulated a virtual object in a bimanual
task in which the object either present or absent (Witney et

al. 2001). An isolated pinch can also strongly influence the
force used on subsequent lifts (Quaney et al. 2003). Our
results suggest that subjects are able to establish separate
memory representations for each object when they are
clearly distinct in the environment.

These results are the first demonstration that subjects
can additively combine dynamic internal models. Subjects
can generate appropriate grip force when two previously
experienced objects are lifted for the first time in
combination. The grip force used follows a simple
combination rule, which has a Bayesian interpretation,
based on the experienced weight and a default weight. The
internal models, being parameterized by a scalar value, the
weight, are perhaps one of the simpler internal models.
Whether similar addition can be seen for more complex
internal models parameterized by vector values is still an
open question.
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